
IDLGen: Automated Code Generation for
Inter-parameter Dependencies in Web APIs

Saman Barakat1[0000−0002−7714−3742], Ana Belén Sánchez1[0000−0003−1473−0955],
and Sergio Segura1[0000−0001−8816−6213]

SCORE Lab, I3US Institute,
Universidad de Sevilla, Seville, Spain

{salias,anabsanchez,sergiosegura}@us.es

Abstract. The generation of code templates from web API specifica-
tions is a common practice in industry. However, existing tools neglect
the dependencies among input parameters (so-called inter-parameter de-
pendencies), extremely common in practice and usually described in nat-
ural language. As a result, developers are responsible for implementing
the corresponding validation logic manually, a tedious and error-prone
process. In this paper, we present IDLGen, an approach for the auto-
mated generation of validation code for inter-parameter dependencies
in web APIs. Specifically, we exploit the IDL4OAS extension for speci-
fying inter-parameter dependencies as a part of OpenAPI Specification
(OAS) files. To make our approach applicable in practice, we present
an extension of the popular OpenAPI Generator tool ecosystem, au-
tomating the generation of Java and Python code for the management of
inter-parameter dependencies in web APIs. Evaluation results show the
effectiveness of the approach in accelerating the development of APIs,
generating up to 9.4 times more lines of Java code than the current gen-
erator. This leads to average time savings ranging from 16 to 24 minutes
when implementing API operations including between one and three de-
pendencies, when compared to manual coding. More importantly, the
generated code mitigates human errors, making web APIs significantly
more reliable.

Keywords: Web APIs · Open API and Scaffolding · Code generation

1 Introduction
Web Application Programming Interfaces (APIs) enable communication between
heterogeneous devices and systems over the Web. They have gained significant
interest in the software industry as the de-facto standard for software integra-
tion. API directories such as Rapid [32] index over 40K web APIs from different
domains such as shopping, finance, and social networks. Web APIs can be cate-
gorized into various types based on application designs and the communication
protocols they use. Hypertext Transfer Protocol (HTTP) APIs, arguably the
de-facto standard, use the HTTP protocol to interact—typically through CRUD
(Create, Read, Update, and Delete) operations—with resources (e.g., a video in
the YouTube API [40] or an invoice in the PayPal API [30]). HTTP APIs often

2 S. Barakat et al.

implement the principles of the REST architectural style for distributed systems,
being referred to as RESTful APIs [10]. Henceforth, we will use the term web
API to refer to RESTful web APIs or, more generally, to HTTP APIs.

Web APIs are commonly described using the OpenAPI Specification (OAS)
format [29,12]. An OAS document describes a web API in terms of the operations
supported, as well as their input parameters and the possible responses. OAS
documents are heavily used nowadays for automating certain tasks in the API
lifecycle. One of these applications is scaffolding : generating code templates for
both API servers and clients from the OAS specification of the API. There are
multiple tools available for code generation, including AutoRest [2], Codegen [6],
NSwag [25], and OpenAPI Generator [28], among others. OpenAPI Generator is
a popular open-source code generation tool ecosystem for OAS. It is developed in
Java and offers over 50 generators for clients and servers in different programming
languages.

Web APIs typically include inter-parameter dependencies. These are con-
straints that restrict the way in which two or more input parameters can be
combined to form a valid call to the service [20,21]. For example, when searching
for businesses in the Yelp API1, the parameter location is “required if either
latitude or longitude is not provided”, and both parameters are “required if
location is not provided”. A recent study revealed that dependencies are ex-
tremely common and pervasive in industrial web APIs: they appear in 4 out of
every 5 APIs across all application domains and types of operations [21]. How-
ever, the current version of OAS provides no support for the formal description of
these types of dependencies, despite being a highly demanded feature by practi-
tioners2. Instead, users are encouraged to describe them informally using natural
language3. As a result, current scaffolding tools do not support the generation
of validation code for inter-parameter dependencies, as these are not specified
in OAS documents. Therefore, the validation code associated to these depen-
dencies must be manually implemented. In the previous example, for instance,
developers should write the required assertions to make sure that latitude and
longitude parameters are used together when the location parameter is not
provided in an API call, both in clients and servers. This is not only tedious,
but also error-prone, making validation failures very common in practice [22].

In this paper, we present IDLGen, an approach for the automated genera-
tion of code for validating inter-parameter dependencies in web API servers. For
this, we leverage IDL4OAS, an OAS extension for specifying inter-parameter de-
pendencies as a part of OAS documents using the Inter-parameter Dependency
Language (IDL) [17,20]. To make our approach readily applicable in practice, we
present an extension of the OpenAPI Generator tool ecosystem, enabling the au-
tomated generation of Java and Python code for the validation of inter-parameter
dependencies in API servers. Evaluation results show that our approach gener-
ates up to 940% more lines of code (LoC) for Java, 491% on average. This im-

1 https://www.yelp.com/developers/documentation/v3/business_search
2 https://github.com/OAI/OpenAPI-Specification/issues/256
3 https://swagger.io/docs/specification/describing-parameters

https://www.yelp.com/developers/documentation/v3/business_search
https://github.com/OAI/OpenAPI-Specification/issues/256
https://swagger.io/docs/specification/describing-parameters

Automated Code Generation for Inter-parameter Dependencies in Web APIs 3

provement is even more noticeable for Python, where the OpenAPI Generator
generates an empty method for each API operation, whereas IDLGen generates
up to 68 LoC, 37.2 on average, Additionally, the results of an empirical study
with 81 participants revealed that IDLGen saves, on average, between 16 and
24 minutes per API operation (including between one and three dependencies)
when compared to manual coding. More importantly, our results show that IDL-
Gen effectively avoids human mistakes, common in practice, making web APIs
significantly more reliable.

A very preliminary version of this work, restricted to code generation for Java,
was presented in [3]. This paper extends our previous work in several directions,
including a significantly larger evaluation with 14 industrial API operations, code
generation for Java and Python, and an empirical study with 81 participants.

2 Background
This section introduces key concepts to contextualize our proposal, namely, IDL,
the IDL4OAS extension, and the OpenAPI Generator tool ecosystem.

2.1 Inter-parameter dependency language (IDL)

The Inter-parameter Dependency Language (IDL) is a textual domain-specific
language used to describe dependencies among input parameters in web APIs
[20]. IDL was created based on the results of a study of more than 2.5K operations
of 40 real-world APIs. Specifically, IDL supports expressing seven types of inter-
parameter dependencies widely used in practice. As an example, Listing 1 shows
a fragment of an IDL document describing the inter-parameter dependencies
found in the Google Maps Places API [13]. In what follows, we briefly introduce
the types of dependencies supported by IDL including references to Listing 1:

1 // Operation: Search for places within specified area:
2 ZeroOrOne(radius , rankby==‘distance ’);
3 IF rankby==‘distance ’ THEN keyword OR name OR type;
4 maxprice >= minprice;
5
6 // Operation: Query information about places:
7 AllOrNone(location , radius);
8 Or(query , type);
9 maxprice >= minprice;

10
11 // Operation: Get photo of place:
12 OnlyOne(maxheight , maxwidth);
13
14 // Operation: Automcomplete place name:
15 IF strictbounds THEN location AND radius;

Listing 1: IDL specification of Google Maps Places API.

– Requires. This type of dependency emerges when the presence of a pa-
rameter p1 in a request requires the presence of another parameter p2. For
example, line 3 indicates that if the parameter rankby of the search opera-
tion in Google Maps is set to ‘distance’, then at least one of the following
parameters must be present: keyword, name or type.

4 S. Barakat et al.

– Or. Given a set of parameters, one or more of them must be included in the
request. As an example, in the Google Maps Places API, when searching for
places (line 8), both query and type parameters are optional, but at least
one of them must be used.

– OnlyOne. Given a set of parameters, one and only one of them must be
included in the request. For example, line 12 indicates that only one of the
parameters maxheight and maxwidth must be used.

– AllOrNone. Given a set of parameters, either all of them must be included
in the request, or none of them. For example, as expressed in line 7, either
both location and radius are used, or none of them.

– ZeroOrOne. Given a set of parameters, zero or at most one must be in-
cluded in the request. For example, line 2 indicates that if the parameter
radius is used, then rankby cannot be set to ‘distance’ and vice versa.

– Arithmetic/Relational. Relational and arithmetic dependencies relate two
or more parameters using standard relational and arithmetic operators. For
example, as stated in line 4, the parameter maxprice must be greater than
or equal to minprice.

– Complex. These dependencies are specified as a combination of the previous
ones.

We refer the reader to [17,20] for a detailed description of the language,
including its grammar.

2.2 IDL4OAS

Web APIs are commonly described using the OAS [29] format, arguably the
industry standard. OAS documents describe web APIs in terms of the elements
it comprises, namely, paths, operations, resources, request parameters, and re-
sponses. IDL4OAS [20] is an OAS extension for describing inter-parameter de-
pendencies within OAS using the IDL language. This makes it possible to process
dependencies automatically and leverage them, for example, for automated test
case generation [22].

IDL4OAS supports specifying inter-parameter dependencies at the operation
level. As an example, Listing 2 shows an excerpt of an OAS document in YAML
format extended with IDL4OAS, corresponding to the Get Bussiness operation
of the Yelp API [38]. As illustrated, the property “x-dependencies” has been
added to the “GET /businesses/search” operation. This property is an array
of elements, where each element—preceded by a hyphen— represents a single
dependency following the syntax of IDL.

1 paths:
2 /businesses/search:
3 get:
4 parameters:
5 - name: location [...]
6 - name: latitude [...]
7 - name: longitude [...]
8 - name: open_now [...]
9 - name: open_at [...]

10 - name: limit [...]
11 - name: offset [...]

Automated Code Generation for Inter-parameter Dependencies in Web APIs 5

12 - [...]
13 [...]
14 x-dependencies:
15 - Or(location , latitude AND longitude);
16 - ZeroOrOne(open_now , open_at);
17 - offset + limit <= 1000;
18 - IF offset AND NOT limit THEN offset <= 980;

Listing 2: OAS document of the Get Businesses operation from the Yelp API extended
with IDL4OAS

2.3 OpenAPI Generator

OpenAPI Generator is a set of tools that automatically generate API clients
library, server stubs, configuration, and documentation files based on a given
OAS definition of the API [28]. It is developed in Java, with over 50 generators
for clients and servers that generate code for different programming languages.

OpenAPI Generator has transforming logic as well as templates for each
generation of code. Built-in templates are written in Mustache [24], which is
a template system with multiple implementations for different languages and
technologies. The templates contain common code, independent of the specific
API, and have variables that are replaced with the parsed data from the OAS
file. As an example, Listing 3 (Lines 1, 18-28), shows the code generated when
running OpenAPI Generator on the Search Business operation within the Yelp
API, as shown in Listing 2. It basically consists of a method including some
media type checks and returning an HTTP error (501 - "Not implemented")
to let the developer know that (s)he must implement the functionality of the
operation.

3 Approach: IDLGen

We propose IDLGen, an approach for the automated generation of validation
code for inter-parameter dependencies in Web APIs. Given an API request,
the generated code automatically checks its conformance to the inter-parameter
dependencies of the API, returning an informative error in case a violation is
detected. By automating this process, our approach not only saves development
time but also eliminates potential bugs caused by programming mistakes, which
are prevalent in the validation code of web APIs [21,23].

Figure 1 depicts an overview of the approach. IDLGen generates code from
the API specification in OAS format, arguably the industry standard. This makes
our approach readily applicable and language-independent. Specifically, we lever-
age the IDL4OAS extension for extending OAS files with a rigorous specification
of inter-parameter dependencies using the IDL language. Hence, given an input
OAS file enriched with IDL4OAS, we propose transforming each dependency
into a fragment of executable code that checks whether the incoming API re-
quest satisfies it or not, returning an informative message and an HTTP error
status code in case it is violated. We propose using code templates for the gen-
eration of code, making our approach easily customizable.

6 S. Barakat et al.

1 default ResponseEntity <BusinessesResult > getBusinesses (. . .) {
2 + // Check dependency: Or(location , latitude AND longitude);
3 + if(DependencyUtil.doNotSatisfyOrDependency ((location != null),(latitude != null) &&

(longitude != null))){
4 + return new ResponseEntity("Dependency not satisfied: Or(location , latitude AND

longitude);", HttpStatus.BAD_REQUEST);
5 + }
6 + // Check dependency: ZeroOrOne(open_now , open_at);
7 + if(DependencyUtil.doNotSatisfyZeroOrOneDependency ((openNow != null),(openAt != null))){
8 + return new ResponseEntity("Dependency not satisfied: ZeroOrOne(open_now , open_at);",

HttpStatus.BAD_REQUEST);
9 + }

10 + // Check dependency: offset + limit <= 1000;
11 + if (!(!(offset != null && limit != null) || (offset+limit <=1000.0))){
12 + return new ResponseEntity("Dependency not satisfied: offset + limit <= 1000;",

HttpStatus.BAD_REQUEST);
13 + }
14 + // Check dependency: IF (offset AND NOT limit) THEN offset <= 980;
15 + if (!(!((offset != null) && !(limit != null)) || (offset != null && offset <=980.0))){
16 + return new ResponseEntity("Dependency not satisfied: IF (offset AND NOT limit) THEN

offset <= 980;", HttpStatus.BAD_REQUEST);
17 + }
18 getRequest ().ifPresent(request -> {
19 for (MediaType mediaType: MediaType.parseMediaTypes(request.getHeader("Accept"))) {
20 if (mediaType.isCompatibleWith(MediaType.valueOf("application/json"))) {
21 String exampleString = ". . .";
22 ApiUtil.setExampleResponse(request , "application/json", exampleString);
23 break;
24 }
25 }
26 });
27 return new ResponseEntity <>(HttpStatus.NOT_IMPLEMENTED);
28 }
29 + public static boolean doNotSatisfyOrDependency(boolean ... assertions){
30 + boolean result = false;
31 + for (int i=0;i<assertions.length;i++){
32 + result = result || assertions[i];
33 + if (result)
34 + return false;
35 + }
36 + return true;
37 + }
38 + public static boolean doNotSatisfyZeroOrOneDependency(boolean ... assertions){
39 + boolean result = true;
40 + for (int i=0;i<assertions.length;i++){
41 + result = result && ZeroOrOneAllOrNoneElement(i,assertions ,false ,true);
42 + if (! result)
43 + break;
44 + }
45 + return !result;
46 + }
47 + private static boolean ZeroOrOneAllOrNoneElement(int i,boolean [] allElements ,

boolean negateElement , boolean negateRemainingElements){
48 + boolean element = negateElement ? allElements[i]:! allElements[i];
49 + if (element)
50 + return true;
51 + boolean result = true;
52 + for (int j=0;j<allElements.length;j++){
53 + if (i!=j){
54 + boolean otherElement = negateRemainingElements ? !allElements[j]: allElements[j];
55 + result = result && otherElement;
56 + if (! result)
57 + return false;
58 + }
59 + }
60 + return true;
61 + }

Listing 3: Code generated by IDLGen for the Get Businesses operation (Yelp API)

To make our approach applicable in practice, we have developed IDLGen, an
extension of the widely recognized OpenAPI Generator tool suite [28], com-
plementing its functionalities to generate Java and Python code to deal with
dependencies in web API servers. To achieve our objectives, we created a fork

Automated Code Generation for Inter-parameter Dependencies in Web APIs 7

of the OpenAPI Generator project on GitHub [15]. Within this fork, we ex-
tended the functionality of two generators, responsible for generating projects
for “Spring” and “FastAPI” frameworks. Additionally, we developed a Mustache
template that incorporates the necessary logic for different types of dependencies,
including Or, OnlyOne, AllOrNone, and ZeroOrOne. Leveraging the extended
classes, the IDL parser [16], and the Mustache template, we translated depen-
dencies expressed using IDL4OAS [20] into conditional blocks for each assertion
within an operation. If the condition specified by the dependency is not met, the
code returns a bad request HTTP status code (400), accompanied by descriptive
error messages.

Open API
Specification

IDL4OAS

}

Modified template filesAPI info + Dependencies assertions

Fig. 1: IDLGen overview

As an example, Listings 3 depicts the Java server code generated by IDLGen
for the Get Bussiness operation of the Yelp API. The tool receives as input the
specification of the API operation, shown in Listing 2, including the description
of dependencies in an IDL4OAS block. Lines of code generated by IDLGen are
highlighted in green and preceded by the symbol ‘+’ for illustrative purposes.
Lines not highlighted are those generated by the original OpenAPI Generator.
As illustrated, the code generated by IDLGen consists of conditional statements
checking whether or not each dependency is violated (lines 2-17), plus some
auxiliary methods for checking non-trivial dependencies (lines 29-61). Overall,
IDLGen generates 55 LoC without counting comments, whereas the original
OpenAPI Generator generates 10 LoC. This means an improvement of 450% on
the amount of generated code.

4 Evaluation
We aim to answer the following research questions:

– RQ1: What are the gains of using IDLGen in terms of the amount of gen-
erated code? We aim to quantify the gains of our approach in terms of the
lines of code automatically generated in comparison with standard code gen-
erators.

– RQ2: What are the benefits of IDLGen in terms of development time and
ratio of failures? We aim to study the benefit of using our approach in re-
ducing development time and faults in the validation code of inter-parameter
dependencies compared to manual implementation.

8 S. Barakat et al.

4.1 Subject APIs

We used a dataset of 14 API operations from 10 real-world APIs previously used
in the context of web API testing [33]. These operations represent a diverse set
in terms of domains, sizes, and dependencies, including all the types of inter-
parameter dependencies identified in [21] (c.f. Section 2.1). Table 1 shows the
web API operations used in this study. For each operation, the table shows
the name and reference of the API it belongs to, name, number of parameters,
number of dependencies, and number (and percentage) of parameters involved in
its dependencies (column PD(%)). For each API, we used the OAS specification
file provided in [33], which includes the specification of IDL dependencies using
IDL4OAS. Since the experiments were run locally, we slightly modified each OAS
file changing the server URL and removing security-related configuration details,
e.g. OAuth. The resulting OAS files used in our experiments are available as part
of the supplementary material [4].

4.2 Experiment 1: Code generation
In this experiment, we aim to answer RQ1 by evaluating the amount of code
generated by our approach in comparison to standard specification-driven tools.

Experimental setup. We used IDLGen—our extension of the OpenAPI Gen-
erator tool—to generate Java server code (Spring) and Python server code
(FastAPI) for the API operations listed in Table 1. Specifically, for each op-
eration, we generated code using the standard OAS specification files—with no
information about inter-parameter dependencies—and the OAS files enriched
with IDL4OAS—describing inter-parameter dependencies using IDL. Then, we
computed the number of generated lines of code on each scenario, with and with-
out dependencies. To make the results more accurate, we restricted the counting
of LoC to the method implementing the API operation (and corresponding aux-
iliary methods), excluding imports and class definitions code, since it is common
in both cases. The generated projects are available as part of the supplementary
material of the paper [4].

Experimental results. Table 1 shows the result of our experiment on 14 real-
world API operations. On the one hand, the original OpenAPI Generator tool—
with no support for dependencies—generated exactly 10 LoC of Java for each
API operation. This is because the code generated is always the same: a method
template with some basic media type checks (see lines 18-28 from the example in
Listing 3). Analogously, it generated an empty method in Python for each API
operation. On the other hand, IDLGen—including support for dependencies–
generated between 13 and 104 LoC of Java (59.1 LoC on average) and between 2
and 68 LoC of Python (37.2 on average). This means IDLGen generated between
30% and 940% more Java code (491% on average) than the popular OpenAPI
Generator tool (recall that the tool generates a method with 10 LoC for all API
operations). The improvement is even more noticeable in Python, where Ope-
nAPI Generator generated an empty method for each API operation, whereas

Automated Code Generation for Inter-parameter Dependencies in Web APIs 9

IDLGen generated up to 68 LoC. As expected, this improvement seems to be
proportional to the number of dependencies of the operation. As an example,
the largest portion of code (94 LoC for Java, 68 LoC for Python) was gener-
ated for the API operation with more dependencies, YouTube Search, with 31
parameters and 15 dependencies (c.f. Table 1).

API Operation Parameters Deps PD(%) Java Python

Amadeus - HotelOffers [1] 27 8 11 (41%) 93 62
Box - FoldersItems [5] 9 3 5 (56%) 43 25
DHL - FindByAddress [8] 10 1 2 (20%) 22 9
Foursquare - VenuesSearch [11] 17 3 7 (41%) 53 32
Ohsome - ElementArea [26] 11 3 7 (64%) 86 59
Ohsome - ElementAreaRatio [26] 15 4 9 (60%) 89 61
OMDb - Search [27] 9 1 3 (33%) 47 29
Travels - TripsUser [35] 6 1 2 (33%) 13 2
Tumblr - BlogLikes [36] 5 1 3 (60%) 37 21
Yelp - BusinessesSearch [38] 14 4 7 (50%) 55 34
Yelp - TransactionsSearch [38] 3 1 3 (100%) 22 9
YouTube - Comments [40] 6 3 4 (67%) 77 52
YouTube - CommentThreads [40] 11 6 9 (82%) 86 58
YouTube - Search [40] 31 15 26 (84%) 104 68

Mean 59.1 37.2
Table 1: Java and Python #LoC generated by IDLGen. Deps = Dependencies. PD(%)
= Number and percentage of parameters involved in the dependencies.

To check the correctness of the generated code we performed a sanity check as
follows. We used the open-source framework RESTest [22,33] for automatically
generating test cases for the API operations under test. Specifically, for each
subject API operation, we used RESTest to generate 1000 valid test cases—
satisfying all the dependencies described in the OAS file—and 1000 invalid test
cases—API requests violating one or more inter-parameter dependencies. Then,
we ran the test cases against the validation code generated and confirmed that
they were correctly processed. Specifically, valid calls were handled returning a
200 HTTP status code4, whereas invalid calls were correctly identified, returning
proper 400 HTTP status codes and descriptive error messages. This supports the
validity of the generated code. The generated test cases are also available as a
part of the supplementary material [4].

Response to RQ1

IDLGen generates between 1.3 and 9.4 times more Java code than a
standard code generator. The improvement is even more noticeable in
Python, where OpenAPI Generator generates no code (empty method),
and IDLGen generates between 2 and 68 LoC.

4 We configured the tool such that the generated code returns a 200 status code (rather
than 501 - “Not implemented”) when all dependencies are satisfied.

10 S. Barakat et al.

4.3 Experiment 2: Implementation time and faults
In this experiment, we aim to address RQ2 by evaluating the time required
by developers to implement the validation code for checking inter-parameter
dependencies, as well as the failure rate of the produced code.

Experimental setup. We conducted an experiment with 81 second-year stu-
dents of the Software Engineering Bachelor Degree at University of Seville.
Specifically, the experiment was conducted in the course on Software Archi-
tecture and Integration. The experiment took place at the end of the course
when students had gained experience consuming and implementing REST APIs
using the Spring framework. Participants were tasked with implementing inter-
parameter dependencies for two API operations, keeping a record of the invested
time. Then, the resulting code was analyzed by the authors, who ran a thorough
test suite on each participant project to identify failures.

The 81 participants were divided into four groups, who attended a session of
1 hour and 50 minutes each. The authors of the paper conducted each session. At
the beginning of each session, the instructors briefly introduced inter-parameter
dependencies and IDL. Then, participants were asked to download two tem-
plate Java projects (Spring Boot) from GitHub, where they had to implement
the inter-parameter dependencies of two API operations: a mock version of the
search business transactions operation in the Yelp Fusion API, and a mock ver-
sion of the folder listing operation in the Box API. The Yelp Fusion API project
featured a single dependency, whereas the Box API project had three dependen-
cies, depicted in IDL format in Listings 4 and 5, respectively. Participants were
asked to implement and test their code and then submit it through the univer-
sity virtual platform, indicating the starting and ending time for each project
as a part of the submission. In a later step, each submission was thoroughly
analyzed by the authors, running a test suite on each participant project. These
test suites were carefully crafted by the authors trying to cover the most rele-
vant input combinations and including both valid and invalid API requests. As
a sanity check, we used IDLGen for generating code for both API operations
and confirmed that the generated code passed both test suites.

Among the 162 submissions received (two projects per participant), five of
them were empty and were discarded, resulting in 77 projects for the Yelp API,
and 80 for the Box API. All submissions, duly anonymized, are included in the
supplementary material [4], as well as the test suites used.

1 - Or(location , latitude AND longitude);

Listing 4: IDL specification of the Search Business Transactions operation (Yelp API)

1 - IF marker THEN usemarker == true;
2 - IF (usemarker == true AND folder_id == ’0’) THEN NOT sort;
3 - ZeroOrOne(usemarker == true , offset);

Listing 5: IDL specification of the Folder Listing operation (Box API)

Experimental results. As summarized in Table 2, participants took between
2 and 42 minutes (15.6 minutes on overage) to implement the validation code

Automated Code Generation for Inter-parameter Dependencies in Web APIs 11

for the Yelp API operation (one dependency), and between 8 and 62 minutes
(24.3 minutes on average) for the Box API operation (three dependencies). In
sharp contrast, IDLGen took less than one second to automatically generate
the validation code of both API operations. In terms of faults, more than half

Time

API operation Projects Min Max Avg Failures (%)

Box - FoldersItems 80 8 62 24.3 92.5
Yelp - TransactionsSearch 77 2 42 15.6 51.9

Table 2: Average implementation time (min) and percentage of projects with failures

(51.9%) of the Yelp API projects did not pass one or more of the test cases
created by the authors. On the other hand, a significantly higher percentage
(92.5%) of the Box API projects failed at least one test case. Upon analyzing
the test results, it was observed that 44.3% of Yelp API projects failed when
making a valid request that included the location parameter. It appears that the
participants either misunderstood the logic behind the Or dependency or did not
adequately test their code for valid requests. This is because when the location
dependency is passed, the request should be valid regardless of the latitude and
longitude values. In the case of the Box API, we found that a significant portion of
the failures (78%) were due to a null value not properly checked (dependency (IF
marker THEN usemarker==true;)) throwing a Null Pointer Exception. These
results support previous findings revealing that many of the failures revealed in
Web APIs are due to faults in the input validation logic [23]. Again, this is in
sharp contrast with our approach, where valid code is automatically generated,
discarding potential human mistakes.

As expected, the time and percentage of failures observed in manual coding
seem to increase with the number and complexity of dependencies. This suggests
that the benefits of IDLGen would be significantly more noticeable in highly-
constrained API operations, e.g., 25 out of the 31 input parameters of the search
operation in the YouTube API are involved in at least one dependency [20].

The results also revealed the potential of IDLGen to improving code main-
tainability. For example, we observed that some of the participants tried to check
all the dependencies in a single long if statement, making the code error-prone
and hard to understand. In contrast, code generated by IDLGen addresses each
dependency independently, showing descriptive error messages for each of them.

Response to RQ2

IDLGen saves, on average, between 16 and 24 minutes in API operations
with between one and three dependencies. More importantly, the gener-
ated code mitigates human error, making Web APIs substantially more
reliable. Savings are expected to be more noticeable as the number and
complexity of dependencies increases.

12 S. Barakat et al.

5 Related work

Several papers have addressed the problem of automated code generation of
web APIs. Ed-douibi et al. presented an approach called EMF-REST that takes
Eclipse Modeling Framework (EMF) data models as input to generate REST
APIs [9]. Gómez et al. introduced a proposal called CRUDyLeaf based on Domain-
Specific Languages (DSL). The tool takes an entity with CRUD operations (Cre-
ate, Read, Update, Delete) to generate Spring Boot REST APIs [14].

Queirós presented Kaang, an automatic generator of REST Web applica-
tions. Its goal is to reduce the impact of creating a REST service by automating
all its workflow, such as creating file structuring, code generation, dependen-
cies management, etc. [31]. This tool is based on Yeoman [39], an open-source,
client-side development stack consisting of tools and frameworks intended to
help developers build web applications.

Deljouyi et al. introduced MDD4REST [7], a model-driven methodology that
uses Domain-Driven Design (DDD) to produce a rich domain model for web ser-
vices. Also, it designs REST web services using modeling languages and supports
automatic code generation through a transformation of models. The authors in
[37] used UML class diagrams to model a set of NoSQL database collections,
and then automate the generation of common database access functions and the
wrapping of these functions within a set of REST APIs.

Li et al. proposed a Navigation-First Design approach to make a REST API
navigable before implementing any service actions [19]. This approach is based
on REST Chart [18], which is a model and language to design and describe REST
APIs without violating the REST constraints. Rossi [34] proposed a model-driven
approach to develop a REST API. First, they used modeling of the API with
specific profiles. Then, a model transformation exploited REST API Modeling
Language (RAML) as an intermediate notation that could be used to produce
documentation and code for various languages automatically.

In contrast to related papers, this is the first work addressing code generation
for inter-parameter dependencies in web APIs. Evaluation results show that this
leads to important gains in terms of productivity and reliability. Our work is
based on exploiting an enriched version of the OAS specification— arguably the
de-facto standard in the industry—making it easy to integrate our approach into
related tools.

6 Threats to validity

In this section, we discuss the potential validity threats that may have influenced
our work and how these were mitigated.

Internal validity. Are there factors that might affect the results of our eval-
uation? A potential threat is the possibility of implementation errors within
the IDLGen extension, which could compromise the accuracy and reliability of
the generated code. To mitigate this threat, we conducted extensive testing and
validation throughout the development process. More importantly, we ran 28K

Automated Code Generation for Inter-parameter Dependencies in Web APIs 13

automatically generated test cases (2K test cases per API operation) on the code
generated for the 14 subject API operations revealing no failures.

The validity of the experiment with people may be compromised due to the
lack of experience of the students who participated in the study. To mitigate
this threat, we conducted the experiment at the end of the course, when stu-
dents had gained extensive experience in consuming and implementing REST
APIs. We also simplified the examples by excluding parameters unrelated to de-
pendencies, which allowed students to focus exclusively on the implementation
process. In addition, we provided thorough explanations of the dependencies for
both examples to ensure that students understood the tasks effectively. Overall,
the results show that implementing the validation code for inter-parameter de-
pendencies is time-consuming and error-prone, supporting the value of IDLGen
to generate error-free code in a matter of seconds.

External validity. To what extent can we generalize the findings of our inves-
tigation? The generalizability of our findings may be limited due to the specific
set of API operations evaluated. To mitigate this threat, we carefully selected a
diverse sample of 14 operations from 10 industrial APIs with millions of users
worldwide. Similarly, we focused on a specific and highly popular code generator,
OpenAPI Generator, and therefore our results may not be generalized further.
To the best of our knowledge, however, none of the state-of-the-art generators
for web APIs supports the generation of validation code for inter-parameter de-
pendencies, and therefore the gain reported in our paper should be analogous
when considering similar tools.

7 Conclusions and future work

This paper presents IDLGen, an approach for the automated generation of vali-
dation code for inter-parameter dependencies in web APIs. Specifically, our ap-
proach leverages the IDL4OAS extension for describing dependencies as a part of
OAS files. The generated code can automatically detect whether or not incoming
API calls satisfy the dependencies among input parameters, returning informa-
tive errors in case they are violated. To implement our approach, we extended
the well-known OpenAPI Generator tool ecosystem to automate the generation
of Java and Python code for inter-parameter dependencies in web APIs. The
evaluation results show that IDLGen generates up to 9.4 times more LoC for
Java servers than a state-of-the-art code generator (5 times more LoC on av-
erage), with similarly noticeable savings in Python. The results of an empirical
study with 81 participants revealed that IDLGen saves an average of between 16
minutes (one dependency) and 24 minutes (three dependencies) per API opera-
tion. More importantly, the code generated minimizes the possibility of making
mistakes, making APIs significantly more robust and reliable.

Several challenges remain for future work. We plan to address the automated
generation of documentation for inter-parameter dependencies. Also, we aim
to obtain feedback from the core team of the OpenAPI Generator project for
eventually merging our approach into the official tool ecosystem.

14 S. Barakat et al.

Acknowledgements

This work has been partially supported by grants PID2021-126227NB-C22 and
TED2021-131023B-C21, funded by MCIN/AEI/10.13039/501100011033 and by
European Union “NextGenerationEU”/PRTR». Ana B. Sánchez was supported
by the VI Plan Propio de Investigación y Transferencia of Universidad de Sevilla
2021 [VI PPIT-US].

References

1. Amadeus Hotel Search API, https://developers.amadeus.com/self-service/
category/hotel/api-doc/hotel-search/api-reference, accessed: July 2023

2. AutoRest, https://github.com/Azure/autorest, accessed: June 2023
3. Barakat, S., Roque, E.B., Sánchez, A.B., Segura, S.: Specification-Driven Code

Generation for Inter-parameter Dependencies in Web APIs. In: Troya, J., Miran-
dola, R., Navarro, E., Delgado, A., Segura, S., Ortiz, G., Pautasso, C., Zirpins, C.,
Fernández, P., Ruiz-Cortés, A. (eds.) Service-Oriented Computing – ICSOC 2022
Workshops. pp. 261–273. Springer Nature Switzerland, Cham (2023)

4. Barakat, S., Sánchez, A.B., Segura, S.: [Supplementary material] IDLGen: Au-
tomated Code Generation for Inter-parameter Dependencies in Web APIs (July
2023), https://doi.org/10.5281/zenodo.8138633

5. Box API, https://developer.box.com/reference/, accessed: July 2023
6. Swagger Codegen, https://swagger.io/tools/swagger-codegen/, accessed:

June 2023
7. Deljouyi, A., Ramsin, R.: MDD4REST: Model-Driven Methodology for Developing

RESTful Web Services. In: MODELSWARD. pp. 93–104. Scitepress (2022)
8. DHL Location Finder API, https://developer.dhl.com/api-reference/

location-finder, accessed: July 2023
9. Ed-Douibi, H., Izquierdo, J.L.C., Gómez, A., Tisi, M., Cabot, J.: EMF-REST:

Generation of RESTful APIs from Models. In: Proceedings of the 31st Annual
ACM Symposium on Applied Computing. vol. 04-08-April-2016, pp. 1446–1453.
Association for Computing Machinery (2016)

10. Fielding, R.T.: REST: Architectural Styles and the Design of Network-Based Soft-
ware Architectures. Doctoral dissertation, University of California (2000)

11. Foursquare Search for Venues API, https://developer.foursquare.com/
reference/v2-venues-search, accessed: July 2023

12. Gamez-Diaz, A., Fernandez, P., Ruiz-Cortes, A.: Automating SLA-Driven API De-
velopment with SLA4OAI. In: Yangui, S., Bouassida Rodriguez, I., Drira, K., Tari,
Z. (eds.) Service-Oriented Computing. pp. 20–35. Springer International Publish-
ing, Cham (2019)

13. Google Maps API, https://developers.google.com/maps/documentation/
places/web-service/search, accessed: July 2023

14. Gómez, O.S., Rosero, R.H., Cortés-Verdín, K.: CRUDyLeaf: A DSL for Gener-
ating Spring Boot REST APIs from Entity CRUD Operations. Cybernetics and
Information Technologies 20(3), 3–14 (2020)

15. IDLGen. https://github.com/ssegura/openapi-generator/tree/IDLGen-extension,
accessed: July 2023

16. IDL Parser. https://github.com/isa-group/IDL-mvn-dep, accessed: July 2023

https://developers.amadeus.com/self-service/category/hotel/api-doc/hotel-search/api-reference
https://developers.amadeus.com/self-service/category/hotel/api-doc/hotel-search/api-reference
https://github.com/Azure/autorest
https://doi.org/10.5281/zenodo.8138633
https://developer.box.com/reference/
https://swagger.io/tools/swagger-codegen/
https://developer.dhl.com/api-reference/location-finder
https://developer.dhl.com/api-reference/location-finder
https://developer.foursquare.com/reference/v2-venues-search
https://developer.foursquare.com/reference/v2-venues-search
https://developers.google.com/maps/documentation/places/web-service/search
https://developers.google.com/maps/documentation/places/web-service/search
https://github.com/isa-group/IDL-mvn-dep

Automated Code Generation for Inter-parameter Dependencies in Web APIs 15

17. Inter-parameter Dependency Language (IDL), https://github.com/isa-group/
IDL, accessed: July 2023

18. Li, L., Chou, W.: Design and Describe REST API without Violating REST: A Petri
Net Based Approach. In: 2011 IEEE International Conference on Web Services. pp.
508–515 (2011)

19. Li, L., Tang, T., Chou, W.: Automated Creation of Navigable REST Services Based
on REST Chart. Journal of Advanced Management Science pp. 385–392 (2016)

20. Martin-Lopez, A., Segura, S., Muller, C., Ruiz-Cortes, A.: Specification and Auto-
mated Analysis of Inter-Parameter Dependencies in Web APIs. IEEE Transactions
on Services Computing pp. 1–14 (2021)

21. Martin-Lopez, A., Segura, S., Ruiz-Cortés, A.: A Catalogue of Inter-parameter
Dependencies in RESTful Web APIs. In: Yangui, S., Bouassida Rodriguez, I., Drira,
K., Tari, Z. (eds.) Service-Oriented Computing. pp. 399–414. Springer International
Publishing, Cham (2019)

22. Martin-Lopez, A., Segura, S., Ruiz-Cortés, A.: RESTest: Black-Box Constraint-
Based Testing of RESTful Web APIs. In: Kafeza, E., Benatallah, B., Martinelli,
F., Hacid, H., Bouguettaya, A., Motahari, H. (eds.) Service-Oriented Computing.
pp. 459–475. Springer International Publishing, Cham (2020)

23. Martin-Lopez, A., Segura, S., Ruiz-Cortés, A.: Online Testing of RESTful APIs:
Promises and Challenges. In: Proceedings of the 30th ACM Joint European Soft-
ware Engineering Conference and Symposium on the Foundations of Software En-
gineering. p. 408–420. ESEC/FSE 2022, Association for Computing Machinery,
New York, NY, USA (2022)

24. Logic-less templates, https://mustache.github.io/, accessed: July 2023
25. NSwag toolchain, https://github.com/RicoSuter/NSwag, accessed: June 2023
26. Ohsome API, https://docs.ohsome.org/ohsome-api/v1/, accessed: July 2023
27. OMDb API, http://www.omdbapi.com/, accessed: July 2023
28. OpenAPI Generator, https://openapi-generator.tech/, accessed: July 2023
29. OpenAPI Specification, https://www.openapis.org/, accessed: July 2023
30. PayPal Invoicing API, https://developer.paypal.com/docs/api/invoicing/

v1/#invoices, accessed: July 2023
31. Queirós, R.: Kaang: A RESTful API Generator for the Modern Web. In: 7th Sym-

posium on Languages, Applications and Technologies SLATE 2018. vol. 62, pp.
1:1–1:15. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2018)

32. RapidAPI Hub, https://rapidapi.com/hub, accessed: March 2022
33. RESTest: Automated Black-Box Testing of RESTful Web APIs, https://github.

com/isa-group/RESTest, accessed: July 2023
34. Rossi, D.: UML-based Model-Driven REST API Development. In: WEBIST 2016

- Proceedings of the 12th International Conference on Web Information Systems
and Technologies. pp. 194–201 (2016)

35. Travel API, https://github.com/isa-group/RESTest/tree/master/src/test/
resources/Travel, accessed: July 2023

36. Tumblr API, https://www.tumblr.com/docs/en/api, accessed: July 2023
37. Wang, B., Rosenberg, D., Boehm, B.W.: Rapid Realization of Executable Domain

Models via Automatic Code Generation. In: 2017 IEEE 28th Annual Software
Technology Conference (STC). pp. 1–6 (2017)

38. Yelp API, https://docs.developer.yelp.com/reference, accessed: July 2023
39. Yeoman, https://yeoman.io/, accessed: July 2023
40. YouTube Data API, https://developers.google.com/youtube/v3/docs, ac-

cessed: July 2023

https://github.com/isa-group/IDL
https://github.com/isa-group/IDL
https://mustache.github.io/
https://github.com/RicoSuter/NSwag
https://docs.ohsome.org/ohsome-api/v1/
http://www.omdbapi.com/
https://openapi-generator.tech/
https://www.openapis.org/
https://developer.paypal.com/docs/api/invoicing/v1/#invoices
https://developer.paypal.com/docs/api/invoicing/v1/#invoices
https://rapidapi.com/hub
https://github.com/isa-group/RESTest
https://github.com/isa-group/RESTest
https://github.com/isa-group/RESTest/tree/master/src/test/resources/Travel
https://github.com/isa-group/RESTest/tree/master/src/test/resources/Travel
https://www.tumblr.com/docs/en/api
https://docs.developer.yelp.com/reference
https://yeoman.io/
https://developers.google.com/youtube/v3/docs

	IDLGen: Automated Code Generation for Inter-parameter Dependencies in Web APIs

